
Mops
Mike's Object-oriented Programming System

Version 2.6
Part IV
Assembler
Mops is an object-oriented programming system, derived from the Neon language developed by Charles Duff and sold by 
Kriya, Inc.  Kriya have discontinued support for Neon, and have released all the source code into the public domain, 
retaining only the ownership of the name Neon.
Mops implemented by: Michael Hore
Able assistance from: Doug Hoffman

Greg Haverkamp
Xan Gregg

Documentation updated: Version 2.6, June1995
Documentation formatted by: Craig Treleaven
Printing this document
This document is in Microsoft Word Version 5.1 format and uses the fonts Times, Courier, and Helvetica, only.  It is 
formatted using the Laserwriter 7 driver for US Letter paper, portrait orientation, with fractional widths enabled.  If you 
want to print any other way, you will probably need to repaginate and regenerate the table of contents.  See below.
Almost every paragraph in this document is formatted using a Word style.  Formatting is consistent throughout and can be 
reformatted in moments this way.  
Viewing on-line
Of course, you can read the whole manual on-screen.  Word’s Find… command can help to locate items of interest.  One 
other technique is useful but not well known.  Use the Outline View and click the “2” in the ruler at the top of the screen.  
Word will then show the chapters and the sub-headings within.  Whichever line is at the top of the window in outline view 
will become the line at the top of the window when you switch back to Normal View.  By scrolling in Outline View, you can
quickly find the section of interest and position the window for reading in Normal View.  
Two-sided printing
As shipped, this document is formattted for 2-sided printing to save paper.  If you haven’t printed two-sided documents with
your printer before, you might want to practise with the first few pages before sending the whole thing.  On most printers, 
you need to use Word’s option to print first the odd numbered pages (in the Print… dialog), reload the paper and then print 
the even numbered pages.  
Single-sided printing
If you don’t want to bother with two-sided printing, use the Document dialog and make the Gutter margin zero.  If you 
adjust the Left and Right margins so the printable width is still 6.5 inches, the page breaks should stay in the same places.  
Blank pages may pop out here and there as all chapters start on an odd-numbered page.  
A4 Paper
If you select A4 paper in the Page Setup… dialog, the page breaks will change.  Regenerate the table of contents, as below.  
As far as I can tell, the paragraph styles all do the right thing and ajust to the paper width.  Well, all except one:  the header 
on odd-numbered pages will extend a quarter inch into the margin because the tab stop is at 6.5 inches.  Redefine the 
Header style to set it to 6.25, if you feel the need.  
Table of Contents
Use the Table of Contents… dialog to collect headings from level 1 to level 3 for the Table of Contents.  Figure captions 
have Heading 5 style, but I didn’t see a reason to create a table of figures.  Similarly, the instructions in Chapter 3 have 
Heading 4 style and the error codes in the appendix have Heading 6 style.  
Chapter 1—Using the Assembler 1
About this chapter 1
Getting started1
Recompiling the Assembler 1
Assembler colon definitions 1
Assembler method definitions 2
Accessing the dictionary 2
Executing Mops-defined words 3
Toolbox calls 4
Syntax 5
Chapter 2—Registers and Addressing Modes 7



About this chapter 7
Registers 7
Data Registers 7
Address Registers 7
Uses of Data and Address Registers 7
Condition Codes 10
Interrupt Mask10
Supervisor Bit 10
Trace Bit 10
Data Addressing Modes 10
Addressing Modes 11
Data Register Direct 11
Address Register Direct 11
Other Register Direct 11
Address Register Indirect 11
Address Register Indirect with PostIncrement 11
Address Register Indirect with PreDecrement 12
Address Register Indirect with Displacement12
Address Register Indirect with Displacement and Index 12
Program Counter Indirect with Displacement 12
Program Counter Indirect with Displacement and Index 12
Absolute Short Address 12
Absolute Long Address 12
Immediate Data 12
Implicit Reference 13
Chapter 3—Instructions 15
About this chapter 15
Motorola 68000 Instructions 15
Instruction Descriptions 19
Appendix—Error Messages 27
About this Appendix 27
Chapter 1—Using the Assembler
About this chapter
With the Mops Assembler module you can write colon definitions and method definitions in assembly code and you can 
also reference Mops data and executable words.  This chapter explains how the assembler interfaces with Mops.  The 
various Macintosh models use a Motorola 68000, 68020, 68030 or 68040 microprocessor, and the assembler syntax is based
on standard 68000 assembly language.  This chapter is not a tutorial and assumes a basic knowledge of 680x0 assembly 
programming.  We recommend you obtain the User's Manual for your particular microprocessor, published by Motorola.
Only the 68000 instruction set is supported by the Assembler.  The 68020 and later have some additional instructions and 
addressing modes.  If you were to use these, however, your program would not run on earlier Macs which have a 68000 
processor (Mac Plus, SE, Classic, and PowerBook 100).
*** WARNING ***
While the Assembler gives you absolute control over the machine, it may give you problems in when (not if) you want to 
run on Power Macs.  Your 680x0 code, assembled with this assembler, will only be able to run under emulation on the 
Power Mac, which means that later when we have a native Power Mac version of Mops, you would have to make a mixed-
mode call to your assembled code.  This will be far slower than if you had written the code in high-level Mops to start with. 
Mops code on the 680x0 is quite fast anyway, so you should really only be using assembly code if you are doing some very 
low-level machine-specific things.  You may have perfectly good reasons for doing this, and if so, fine.
Getting started
Like most assemblers, the Mops Assembler is a two pass assembler.  It does not run interactively.  Assembly code must be 
in a source file.  The normal Mops "//" load command will load and assemble it.
Recompiling the Assembler
The assembler is a standard Mops module, called AsmMod.  It may be recompiled in the usual way, namely 
compile: asmMod
The source file AsmMod.txt, which is compiled by the above command, consists of a series of // commands to load the 
actual assembler source files.  These are located in the folder Asm Source, in the Mops Source folder.



Assembler colon definitions
To write a colon definition with the assembler, just use ":code" for ":" and ";code" for ";".  The name of the new word 
follows the ":code" on the same line.
Example:
:code demo1 \ adds two numbers and puts the sum onto the stack

move.l #4,D0 \ puts 4 into register D0
add.l #8,D0 \ adds 8 to register D0
move.l D0,-(A6) \ pushes contents of register D0 onto data

\  stack
;code

demo1
. cr
12
Assembler method definitions
To write a method definition with the assembler, just use ":mcode" for ":m" and ";mcode" for ";m".  The name of the new 
selector follows the ":mcode" on the same line.  In the following example, the "put:" and the "asmput:" of class demo2 are 
synonymous, as are the "get:" and the "asmget:".  You will see that in a method, the base address of the current object is in 
register A2.  See Chapter 2 for more information on addressing modes and Mops's usage of registers.
Example:

:class DEMO2  super{ object }

  var int1

:m PUT:   put: int1  ;m

:m GET:   get: int1  ;m

:mcode  ASMGET:
move.l (A2),-(A6)

;mcode

:mcode  ASMPUT:
move.l (A6)+,(A2)

;mcode

;class

demo2 test2

put: test2
asmget: test2 . cr
26
34 asmput: test2
get: test2 . cr
34
Accessing the dictionary
There is a special syntax in the Mops Assembler that obtains the address of a word in the dictionary, and assembles an An-
relative memory reference.  An will be A3, A4 or A5 depending on exactly where  the addressed word  is in the dictionary.  
The assembler looks after these details.  The syntax is "dic[name]".  If the word in the dictionary is a Mops object, you can 
obtain the address of the beginning of the object's ivars with "dicobj[name]".  The following example shows this usage, and 
also how an assembler defined word (demo3) can be accessed in Mops just like any regular definition.
var FUN
0 value AVALUE



:code demo3
move.l #1234,dic[avalue]
moveq #10,D0
move.l D0,dicobj[fun]

;code

: test3
  1  -> avalue   0 put: fun
  demo3
  avalue . cr  get: fun . cr  ;

test3
1234
10
The following example shows an array being accessed with dicobj[name].  Five long words of data starting at the absolute 
address of the array "joe" plus 6 is moved to five registers.  The contents of the five registers are then pushed onto the stack.
The displacement of 6 is necessary because the first 6 bytes of an array are for record keeping.
5 array joe

:code demo4
lea dicobj[joe],A0
movem.l 6(A0),D0-D2/A0-A1
movem.l D0-D2,A0-A1-(A6)

;code

: test4
  7 fill: joe
  demo4
  . . . . . cr  ;

test4
7 7 7 7 7
Alternatively, the first two lines of demo4 could have been written:
lea 6(dicobj[edmund]),A0
movem.l (A0),D0-D2/A0-A2
As you can see from this example, you can add a displacement to a dictionary address.  This displacement is incorporated at
compile time into the displacement assembled into the instruction.
If you require a PC-relative mode to be generated (which might happen, for example, in an interrupt routine where the A 
registers aren't set up for Mops when the code executes), then use e.g.
MOVE.L rel[name],D0
Note that a memory store or test can't use this mode on a 68000 processor, but can on a 68020 or later.
Executing Mops-defined words
Words defined with ":code" become normal Mops words in every respect.  All Mops words are called with a JSR or BSR 
instruction, as in this example:
:code demo5

move.l #55,-(A6)
jsr dic[dup]

: test5  demo5 . . cr  ;

test5
55 55
In this example, you could equally well have used
bsr dic[dup]
provided dup was not more than 32K away in the dictionary.
As all code called with JSR/BSR, Mops definitions must return with an RTS instruction.  However you don't need to put 



RTS explicitly at the end of your assembly definitions, since when the Assembler encounters ;code or ;mcode it always 
assembles an RTS.  If, however, you have a routine which returns from the middle, you will have to put RTS there.
Toolbox calls
The Mops Assembler simplifies doing register based toolbox calls.  To do a toolbox call, have the needed parameters in the 
proper locations (registers or the data stack), use "call" as the opcode and the toolbox name as the operand.  There are many 
examples of toolbox calls in the floating point code.  Details on toolbox calling can be found in your Mops manual and in 
Inside Mac.  The following example tests two strings to find if they are equal.  Inside Mac  describes which parameters go 
into which registers.
:code  demo8 \ tests two "addr len" strings for being equal

move.l (A6)+,D0 \ pop len of first string
swap D0 \    onto high order word of D0
movea.l (A6)+,A0 \ pop addr of first string
or.l (A6)+,D0 \ pop len of 2nd str onto low order word of D0
movea.l (A6)+,A1 \ pop addr of second string
exg A6,A7
call cmpstring \ IF equal THEN returns 0 ELSE 1
exg A6,A7
move.l D0,-(A6) \ push answer onto stack

;code

: test8  " Mops"  " Assembler"  demo8  . cr  ;

test8
1
For a stack-based trap, there are a couple of extra points to note.  Since we use A6 as the data stack, parameters will 
normally be there.  But the Mac uses A7 as its only stack pointer.  The easiest course of action is to precede and follow any 
stack-based Toolbox call with an exg instruction, thus:
exg A6,A7
call <someTrap>
exg A6,A7
If the Toolbox call uses A5, which all QuickDraw calls do, then we have an extra problem in that Mops uses A5 to address 
modules.  In these situations you will need  Whenever a long word is referenced, all 32 bits are being referenced.  With a 
word sized operand the low order 16 bits are intended.  The low order 8 bits are used in a byte reference.
Data Registers
The 8 data registers (D0 - D7) are each 32 bits wide and are primarily used to hold 32 bit (long word) data, 16 bit (word) 
data, and 8 bit (byte) data.  They can also be used for indexing.
Address Registers
The first 7 address registers (A0 - A6) are 32 bits wide and are used to hold addresses although they can also be used for 
indexing.  For addressing references the low order 24 bits are used.
A7 is the stack pointer (SP).  When the system is in supervisor mode, it is the supervisor stack pointer, and in user mode it is
the user stack pointer.  The Macintosh operates in supervisor mode.
Uses of Data and Address Registers
Some of the 68000's registers are used by Mops and the Macintosh for themselves.  See Figure 2 for a memory map of the 
Macintosh while Mops is running.
You may safely manipulate in a ":code" or a ":mcode" definition all D registers, as well as A0 and A1.  If you are not in 
a :mcode definition, A2 is also free.  But note that you can't rely on data in ANY register remaining there across calls of 
your definition.  The assignments of each register are:
D0 Free
D1 Free
D2 Free
D3 Free
D4 Free
D5 Free
D6 Free
D7 Free



A0 Free
A1 Free
A2 Address of first ivar in current object in a :mcode
A3 Lobase pointer
A4 Hibase pointer
A5 Module base pointer, or -1 if not in a module
A6 Data stack pointer.  Also may be referred to as SP.
A7 Return stack pointer (in supervisor mode)

Figure 1—Registers

Figure 2—Memory Map
Condition Codes
There are five condition codes used by the Mops Assembler and most instructions affect at least one of them.  Bits 0 
through 4 are the condition codes and they are the only bits on the user byte that are used.  See chapter 3 for which 
instructions affect which condition codes.  They are used for various tests for conditional branching and setting bytes.  The 
codes are:
Code
Name
Bit Location
Description

X
eXtend
4
Used for multiprecision computations.  If affected then usually set as the C code is set.

N
Negative
3
On if most significant bit of result is on, otherwise off.

Z
Zero
2
On if result is zero, otherwise off.

V
oVerflow
1
On if there is an arithmetic overflow, otherwise off.  If on the result is probably wrong.

C
Carry
0
On if a carry is generated by the most significant digit in an addition, or a borrow is generated by the most significant digit 
in a subtraction, otherwise off.

Interrupt Mask
The interrupt mask is used to disable interrupts at various levels.  It occupies bits 8, 9, and 10 of the status register.  
Interrupt levels range from 1 (001) to 7 (111).  Bit 8 is the low bit, 1.e., for interrupt level 1 bit 8 is set and bits 9 and 10 are 
not set.  If the interrupt priority of an interrupt is less than or equal to the interrupt mask, then the interrupt exception is 
postponed.  An interrupt level of 7 (111) will not be postponed by the interrupt mask even if the mask is 7 (111).  Problems 
like loss of power are level 7 (111).  A mask of 0 (000) means no interrupts are postponed.  0 (000) is the default for the 
interrupt mask.
Supervisor Bit



If the supervisor bit is on then the machine is in supervisor mode and if the supervisor bit is off, then it is in user mode.  
Either mode may be in effect while Mops is running, depending on the actual Mac model and whether virtual memory is in 
use.  This bit (13) affects register A7.  A few instructions, which are not usable in user mode, are known as privileged 
instructions.
Trace Bit
If bit 15 is on then the trace facility is on. After every instruction while bit 15 is on there will be a trap to the currently 
installed debugger.
Data Addressing Modes
Mode
Operand Syntax

Data Register Direct
Dx

Address Register Direct
Ax

Other Register Direct
CCR, SR, USP, <register list>

Address Register Indirect
(Ax)

Address Register Indirect with PostIncrement
(Ax)+

Address Register Indirect with PreDecrement
-(Ax)

Address Register Indirect with Displacement
d(Ax)

Address Register Indirect with Displacement and Index
d(Ax,Ry)

Program Counter Indirect with Displacement
d(PC)

Program Counter Indirect with Displacement and Index
d(PC,Ry)

Absolute Short Address
#xx

Absolute Long Address
#xxxx

Immediate Data
#<data>

Implicit Reference
NA

Notes:
NA
not applicable



( )
indirect

-( )
predecrement indirect

( )+
postincrement indirect

d
displacement

Ax
address register

Dx
data register

Ry
address register or data register

CCR
user byte of status register

SR
status register

USP
user stack pointer

<register list>
group of registers

PC
program counter

#xx
word sized immediate address

#xxxx
long word sized immediate address

#<data>
immediate data

Table 1—Addressing Modes
Addressing Modes
The 68000 has a rich set of addressing modes.  An effective address is the address computed at execution time using the 
addressing mode.  The contents of the effective address are what the operation works on.  If the operand has the size of a 
byte, an address, even or odd, may be accessed.  If the operand size is word or long word, only even addresses maybe 
accessed.
Data Register Direct
The operand is a data register.
MOVE D0,D1
Address Register Direct



MOVEA D0,A1
Other Register Direct
With the MOVE instruction, the operands can be CCR (user byte of the status register, i.e. condition codes), SR (status 
register), or USP (user stack pointer while in supervisor mode).  See Chapter 3 for more details on the MOVE instruction. 
One of the two operands of the MOVEM instruction is a list of registers.  The registers should be listed in the order: D0 thru
D7, A0 thru A7.  Note D0/D2 loads D0 and D2; D0-D2 loads D0, D1, and D2.  A "-" can only be used to group D registers 
or A registers but it cannot group D and A registers together.
MOVE D0,SR
MOVEM 4(A0,D1.L),D6-D7/A0-A2
Address Register Indirect
The effective address is the content of the address register.
NEG (A0)
Address Register Indirect with PostIncrement
The effective address is the content of the address register.  After the operand is computed the register is incremented by 1, 
2, or 4 depending on the operand size.  If A7 is used and the operand size is byte then the operand is still byte but the 
increment is 2.  If another address register is used with an operand size of a byte then the increment is 1.
CLR (A6)+
Address Register Indirect with PreDecrement
Before the operand is computed the address register is decremented by 1, 2, or 4 depending on the operand size.  The 
effective address is the content of the register after decrementation.  If A7 is used and the operand size is byte, then the 
operand is still byte but the decrement is 2.  If another address register is used with an operand size of a byte then the 
decrement is 1.
CLR -(A6)
Address Register Indirect with Displacement
The effective address is the sum of the content of the address register and the 16 bit two's complement integer.  Hex data for
all displacements can be specified using a "$".
CLR 4(SP)
CLR $4(SP)
CLR $-4(SP)
Address Register Indirect with Displacement and Index
The effective address is the sum of the content of the address register, the 16 bit two's complement integer, and the index 
register.  The index register can be a data or an address register and it can be a word or a long word in size.
LEA 4(A0,D1.L),A1
Program Counter Indirect with Displacement
The effective address is the sum of the content of the program counter and the 16 bit two's complement integer.
CLR 4(PC)
Program Counter Indirect with Displacement and Index
The effective address is the sum of the content of the program counter, the 16 bit two's complement integer, and the index 
register.  The index register can be a data or an address register and it can be a word or a long word in size.
LEA 4(PC,D1.L),A1
Absolute Short Address
The effective address is specified absolutely.  The address can no be larger than 16 bits.
Absolute Long Address
The effective address is specified absolutely.  The address is larger than 16 bits.
Immediate Data
The data is specified absolutely.  The maximum size depends on the opcode.  Hex data can be specified using a "$".
MOVE#6,D0
MOVE#-6,D0
MOVE#$6,D0
MOVE#$-6,D0
Implicit Reference
The operands needed are known by the opcode.  No operands are given.
RTS
Chapter 3—Instructions
About this chapter
This chapter explains the machine instructions for the Mops assembler module.  The machine instructions are based on the 



standard 68000 instruction set syntax.  The two significant differences are: 1) you can call the addresses of Mops objects as 
described in chapter 2, and 2) the default operand size is L (long word).  There is a table of all the machine instructions and 
another of the condition fields for instructions Bcc, DBcc, and Scc.  Following the tables are written descriptions of each 
instruction giving details which the tables do not cover.
Motorola 68000 Instructions

Condition Codes

Opcode
Opcode Description
Operand Size

Operand Syntax 
X
N
Z
V
C

ABCD
add decimal with extend
B

Dy,Dx
-(Ay),-(Ax)
A
?
D
?
M

ADD
add binary
B
W
L
<ea>,Dx
Dx,<ea>
A
B
C
F
K

ADDA



add address

W
L
<ea>,Ax
-
-
-
-
-

ADDI
add immediate
B
W
L
#<data>,<ea>
A
B
C
F
K

ADDQ
add quick
B
W
L
#<data>,<ea>
A
B
C
F
K

ADDX
add extended
B
W
L
Dy,Dx
-(Ay),-(Ax)
A
B
C
F
K

AND
AND logical
B
W
L
<ea>,Dx
Dx,<ea>
-



B
C
0
0

ANDI
AND immediate
B
W
L
#<data>,<ea>
-
B
C
0
0

ASL
arithmetic shift left
B
W
L
Dx,Dy         ( r=0)
-
B
C
0
0

#<data>,Dy  (r<>0)
<ea>
A
B
C
J
P

ASR
arithmetic shift right
B
W
L
Dx,Dy          (r=0)
-
B
C
0
0



#<data>,Dy  (r<>0)
<ea>
A
B
C
0
R

Bcc
branch conditionally
B/S
W

<label>
-
-
-
-
-

BCHG
test a bit and change
B

L
Dx,<ea>
#<data>,<ea>
-
-
E
-
-

BCLR
test a bit and clear
B

L
Dx,<ea>
#<data>,<ea>
-
-
E
-
-

BRA
branch always
B/S
W

<label>
-



-
-
-
-

BSET
test a bit and set
B

L
Dx,<ea>
#<data>,<ea>
-
-
E
-
-

BSR
branch to subroutine
B/S
W

<label>
-
-
-
-
-

BTST
test a bit
B

L
Dx,<ea>
#<data>,<ea>
-
-
E
-
-

CHK
check register against bounds

W

<ea>,Dx
-
V
?
?
?

CLR



clear an operand
B
W
L
<ea>
-
0
1
0
0

CMP
arithmetic compare
B
W
L
<ea>,Dx
-
B
C
G
L

CMPA
arithmetic compare address

W
L
<ea>,Ax
-
B
C
G
L

CMPI
compare immediate
B
W
L
#<data>,<ea>
-
B
C
G
L

CMPM
compare memory
B
W
L
(Ay)+,(Ax)+
-
B
C



G
L

DBcc
test condition, decrement and branch

W

Dx,<label>
-
-
-
-
-

DIVS
signed divide

W

<ea>,Dx
-
B
C
H
0

DIVU
unsigned divide

W

<ea>,Dx
-
B
C
H
0

EOR
exclusive OR logical
B
W
L
Dx,<ea>
-
B
C
0
0

EORI
exclusive OR immediate
B
W
L



#<data>,<ea>
-
B
C
0
0

EXG
exchange registers

L
Rx,Ry
-
-
-
-
-

EXT
sign extend

W
L
Dx
-
B
C
0
0

JMP
jump
NA

<ea>
-
-
-
-
-

JSR
jump to subroutine
NA

<ea>
-
-
-
-
-

LEA



load effective address

L
<ea>,Ax
-
-
-
-
-

LINK
link and allocate
NA

Ax,#<displacement>
-
-
-
-
-

LSL
logical shift left
B
W
L
Dx,Dy           (r=0)
-
B
C
0
0

#<data>,Dy  (r<>0)
<ea>
A
B
C
0
P

LSR
logical shift right
B
W
L
Dx,Dy           (r=0)
-
B



C
0
0

#<data>,Dy  (r<>0)
<ea>
A
B
C
0
R

MOVE
move data from source to destination
B
W
L
<ea>,<ea>
-
B
C
0
0

MOVE to CCR
move to condition codes

W

<ea>,CCR
S
S
S
S
S

MOVEto SR
move to the status register

W

<ea>,SR
S
S
S
S
S

MOVE from SR
move from the status register



W

SR,<ea>
-
-
-
-
-

MOVE
move user stack pointer

L
USP,Ax
-
-
-
-
-

USP

Ax,USP

MOVEA
move address

W
L
<ea>,Ax
-
-
-
-
-

MOVEM
move multiple registers

W
L
<register list>,<ea>
<ea>,<register list>
-
-
-
-



-

MOVEP
move peripheral data

W
L
Dx,d(Ay) 
d(Ay),Dx
-
-
-
-
-

MOVEQ
move quick

L
#<data>,Dx
-
B
C
0
0

MULS
signed multiply

W

<ea>,Dx
-
B
C
0
0

MULU
unsigned multiply

W

<ea>,Dx
-
B
C
0
0

NBCD
negate decimal with extend
B



<ea>
A
?
D
?
N

NEG
two's complement negation
B
W
L
<ea>
A
B
C
I
O

NEGX
negate with extend
B
W
L
<ea>
A
B
C
I
O

NOP
no operation
NA

NA
-
-
-
-
-

NOT
logical complement
B
W
L
<ea>
-
B
C
0
0

OR



inclusive OR logical
B
W
L
<ea>,Dx
Dx,<ea>
-
B
C
0
0

PEA
push effective address

L
<ea>
-
-
-
-
-

RESET
reset external devices
NA

NA
-
-
-
-
-

ROL
rotate without extend left
B
W
L
Dx,Dy           (r=0)
-
B
C
0
0

#<data>,Dy  (r<>0)
<ea>
-



B
C
0
P

ROR
rotate without extend right
B
W
L
Dx,Dy           (r=0)
-
B
C
0
0

#<data>,Dy  (r<>0) 
<ea>
-
B
C
0
R

ROXL
rotate with extend left
B
W
L
Dx,Dy           (r=0)
-
B
C
0
Q

#<data>,Dy  (r<>0)
<ea>
A
B
C
0
P

ROXR



rotate with extend right
B
W
L
Dx,Dy           (r=0)
-
B
C
0
Q

#<data>,Dy  (r<>0)
<ea>
A
B
C
0
R

RTE
return from exception
NA

NA
T
T
T
T
T

RTR
return and restore condition codes
NA

NA
T
T
T
T
T

RTS
return from subroutine
NA

NA
-
-
-



-
-

SBCD
subtract decimal with extend
B

Dy,Dx
-(Ay),-(Ax)
A
?
D
?
N

Scc
set according to condition
B

<ea>
-
-
-
-
-

STOP
stop program execution
NA

#<data>
U
U
U
U
U

SUB
subtract binary
B
W
L
<ea>,Dx
Dx,<ea>
A
B
C
G
L

SUBA
subtract address



W
L
<ea>,Ax
-
-
-
-
-

SUBI
subtract immediate
B
W
L
#<data>,<ea>
A
B
C
G
L

SUBQ
subtract quick
B
W
L
#<data>,<ea>
A
B
C
G
L

SUBX
subtract with extend
B
W
L
Dy,Dx
-(Ay),-(Ax)
A
B
D
G
L

SWAP
swap register halves

W

Dx
-
B
C



0
0

TAS
test and set an operand
B

<ea>
-
B
C
0
0

TRAP
trap
NA

#<vector>
-
-
-
-
-

TRAPV
trap on overflow
NA

NA
-
-
-
-
-

TST
test an operand
B
W
L
<ea>
-
B
C
0
0

UNLK
unlink
NA

Ax



-
-
-
-
-

Notes (other than for condition codes):
B
byte sized operand

W
word sized operand

L
long word operand

S
short branch (byte displacement)

NA
not applicable

<ea>
effective address

#<data>
immediate data (size depends on instruction)

#<vector>
0 - 15

#<displacement>
16 bit two's complement integer

#<register list>
registers to be moved

<label>
user defined label

( )
indirect

-( )
predecrement indirect

( )+
postincrement indirect

d(Ax)
address register with displacement

Ax,Ay
address register



Dx,Dy
data register

Rx,Ry
address register or data register

CCR
condition code byte of status register

SR
status register

USP
user stack pointer

Condition codes:
N
Negative

Z
Zero

V
Overflow

C
Carry

X
Extend

Notes on condition codes:
?
Undefined after operation

-
Unaffected by the operation

1
Set

0
Cleared

A
X <- C

B
N <- Rm

C
Z <- ~Rm * … * ~R0

D
Z <- Z * ~Rm * … * ~R0



E
Z <- ~Rm

F
V <- Sm * Dm * ~Rm + ~Sm * ~Dm * Rm

G
V <- ~Sm * Dm * ~Rm + Sm * ~Dm * Rm

H
V <- Division Overflow

I
V <- Dm * Rm

J
V <- Dm * (~Dm-1 + … + ~Dm-r)
+ ~Dm * (Dm-1 + … + Dm-r)

K
C <- Sm * Dm + ~Rm * Dm + Sm * ~Rm

L
C <- Sm * ~Dm + Rm * ~Dm + Sm * Rm

M
C <- Decimal Carry

N
C <- Decimal Borrow

O
C <- Dm + Rm

P
C <- Dm-r+1

Q
C <- X

R
C <- Dr-1

S
Set according to source operand

T
Set according to contents of word on the stack

U
Set according to immediate operand

V
Set if Dx <0, Clear if Dx > <ea>
otherwise undefined



Notes on notes on condition codes:
Sm
most significant bit of source operand before operation

Dm
most significant bit of destination operand before operation

Rm
most significant bit of result after operation

r
shift amount

n
bit number

Condition fields
(Use for test code cc in Bcc, DBcc, and Scc)
Test Code

Operation

Test to Return True

CC
carry clear
~C

CS
carry set
C

EQ
equal
Z

F
always false
0

GE
greater than or equal
N * V + ~N * ~V

GT
greater than
N * V * ~Z + ~V * ~V * ~Z

HI
high
~C * ~Z



LE
less than or equal
Z + N * ~V + ~N * V

LS
low or same
C + Z

LT
less than
N * ~V + ~N * V

MI
minus
N

NE
not equal
~Z

PL
plus
~N

T
always true
1

VC
no overflow
~V

VS
overflow
V

Figure 3—Shifts and Rotates
Instruction Descriptions
ABCD Add Decimal with Extend
This instruction adds the contents of the two operands and the contents of the X bit together with binary coded decimal 
arithmetic and places the result into the second operand.
ADD Add Binary
This instruction adds the contents of the two operands together with two's complement binary arithmetic and places the 
result into the second operand.
ADDAAdd Address
This instruction adds the contents of the two operands together with two's complement binary arithmetic and places the 
result into the second operand.
ADDI Add Immediate
This instruction adds the contents of the two operands together with two's complement binary arithmetic and places the 
result into the second operand.  The immediate data can be up to 32 bits long, depending on the operand size.
ADDQAdd Quick
This instruction adds the contents of the two operands together with two's complement binary arithmetic and places the 
result into the second operand.  The immediate data can be the integers 1 through 8.
ADDXAdd Extended
This instruction adds the contents of the two operands and the X bit together with two's complement binary arithmetic and 



places the result into the second operand.
AND AND Logical
This instruction performs a bitwise logical AND on the contents of the two operands and places the result into the second 
operand.
ANDI AND Immediate
This instruction performs a bitwise logical AND on the contents of the two operands and places the result into the second 
operand.  The immediate data can be up to 32 bits long, depending on the operand size.  With byte or word operand size the 
second operand can be the status register.  If byte, then only the condition codes are affected.  If word, then it is a privileged 
operation and the whole status register is affected.
ASL Arithmetic Shift Left
If there are two operands, then this instruction arithmetically shifts to the left the contents of the second operand by the 
amount specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six 
bits of the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is
only one operand, then the contents of the operand will be arithmetically shifted to the left only one bit and the operand size
is limited to word.  Zeros are shifted into the low order bit and the last value shifted out of the high order bit is placed into 
the C and X bits.  See Figure 3.  This instruction is identical to LSL.
ASR Arithmetic Shift Right
If there are two operands, then this instruction arithmetically shifts to the right the contents of the second operand by the 
amount specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six 
bits of the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is
only one operand, then the contents of the operand will be arithmetically shifted to the right only one bit and the operand 
size is limited to word.  The high order bit is duplicated with each shift of a bit and the last value shifted out of the low 
order bit is placed into the C and X bits.  See Figure 3.
Bcc Branch Conditionally
This instruction causes the program execution to continue at the user specified label if the condition is met.  The condition is
specified by the cc which one of the codes in Table 3.  Two exceptions are F and T; those conditions codes re not supported 
in Bcc (BRA can be used).
BCHG Test a Bit and Change
This instruction complements a bit.  The bit is in the contents of the second operand and the location within the second 
operand is specified by the first operand.  The second operand can be a data register or a byte in memory.  If it is a data 
register, then any one of the 32 bits in the register can be complemented.  The exact bit is specified by the first operand and 
the bits in the data register are numbered from 1 to 32 and from right to left.  If a byte of memory is used, then the bits are 
numbered from 1 to 8.  If the first operand is a data register and the second operand is a byte, then the contents of the data 
register are modulo 8 for the duration of the instruction.
BCLR Test a Bit and Clear
This instruction clears a bit.  The bit is in the contents of the second operand and the location within the second operand is 
specified by the first operand.  The second operand can be a data register or a byte in memory.  If it is a data register, then 
any one of the 32 bits in the register can be cleared.  The exact bit is specified by the first operand and the bits in the data 
register are numbered from 1 to 32 and from right to left.  If a byte of memory is used, then the bits are numbered from 1 to 
8.  If the first operand is a data register and the second operand is a byte, then the contents of the data register are modulo 8 
for the duration of the instruction.
BRA Branch Always
This instruction causes the program execution to automatically branch to the user specified label.
BSET Test a Bit and Set
This instruction sets a bit.  The bit is in the contents of the second operand and the location within the second operand is 
specified by the first operand.  The second operand can be a data register or a byte in memory.  If it is a data register, then 
any one of the 32 bits in the register can be set.  The exact bit is specified by the first operand and the bits in the data 
register are numbered from 1 to 32 and from right to left.  If a byte of memory is used, then the bits are numbered from 1 to 
8.  If the first operand is a data register and the second operand is a byte, then the contents of the data register are modulo 8 
for the duration of the instruction.
BSR Branch to Subroutine
This instruction pushes the contents of the Program Counter (PC) onto the data stack -(A7) and then branches to the user 
specified label.
BTST Test a Bit
This instruction tests a bit.  The bit is in the contents of the second operand and the location within the second operand is 
specified by the first operand.  The second operand can be a data register or a byte in memory.  If it is a data register, then 



any one of the 32 bits in the register can be tested.  The exact bit is specified by the first operand and the bits in the data 
register are numbered from 1 to 32 and from right to left.  If a byte of memory is used, then the bits are numbered from 1 to 
8.  If the first operand is a data register and the second operand is a byte, then the contents of the data register are modulo 8 
for the duration of the instruction.
CHK Check Register against Bounds
This instruction checks the lower half of the contents of the second operand and if it is greater than the upper bound (found 
in the first operand) or less than 0, then the exception processing is initiated and a TRAP is generated.  The CHK instruction
vector (vector #6) is used for the trap.
CLR Clear an Operand
This instruction clears the contents of the operand.
CMP Compare
This instruction subtracts the contents of the first operand from the contents of the second operand but does not change the 
contents of either operand.  Just condition codes are changed.
CMPA Compare Address
This instruction subtracts the contents of the first operand from the contents of the second operand but does not change the 
contents of either operand.  Just condition codes are changed.
CMPI Compare Immediate
This instruction subtracts the contents of the first operand from the contents of the second operand but does not change the 
contents of either operand.  Just condition codes are changed.  The maximum size of the immediate data is determined by 
the operand size.
CMPM Compare Memory
This instruction subtracts the contents of the first operand from the contents of the second operand but does not change the 
contents of either operand.  Just condition codes are changed.
DBcc Test Condition, Decrement and Branch
This instruction first checks to see if the condition is false.  The condition is specified by the cc which is one of the 
condition codes in Table 3.  All 16 condition codes are usable.  If the condition is false, then the contents of the data register 
is decremented by 1.  After the decrementation, if the contents of the data register is -1 then the program execution branches
to the user specified label.
DIVS Signed Divide
This instruction sign divides the contents of the second operand by the contents of the first operand and places the results 
into the second operand.  The first operand is 16 bits and the second operand is 32 bits.  The result is 32 bits with the 
quotient in the lower word and the remainder in the upper word of the register.  If the first operand is a 0, then a TRAP is 
generated.  The Zero Divide vector (vector #5) is used for the TRAP.  If there is an overflow, then the operands are 
unaffected.
DIVU Unsigned Divide
This instruction unsign divides the contents of the second operand by the contents of the first operand and places the results 
into the second operand.  The first operand is 16 bits and the second operand is 32 bits.  The result is 32 bits with the 
quotient in the lower word and the remainder in the upper word of the register.  If the first operand is a 0, then a TRAP is 
generated.  The Zero Divide vector (vector #5) is used for the TRAP.  If there is an overflow, then the operands are 
unaffected.
EOR Exclusive OR Logical
This instruction performs a bitwise logical exclusive OR on the contents of the two operands and places the result into the 
second operand.
EORI Exclusive OR Immediate
This instruction performs a bitwise logical exclusive OR on the contents of the two operands and places the result into the 
second operand.  The immediate data can be up to 32 bits long, depending on the operand size.  With byte or word operand 
size, the second operand can be the status register.  If byte, then only the condition codes are affected.  If word, then it is a 
privileged operation and the whole status register is affected.
EXG Exchange registers
This instruction exchanges the contents of two registers.  They can be both address registers, both data registers, or an 
address register and a data register.
EXT Sign Extend
This instruction extends a byte sized number into a word sized number or a word sized number into a long word sized 
number.  If the operand size is word, then bit 7 is copied into bits 8 to 15 and if the operand size is long word, then bit 15 is 
copied into bits 16 to 31.
JMP Jump



This instruction causes the program execution to automatically branch to the address specified by the contents of the 
operand.
JSR Jump to Subroutine
This instruction pushes the contents of the Program Counter (PC) onto the data stack -(A7) and then branches to the address
specified by the contents of the operand.
LEA Load Effective Address
This instruction places the contents of the first operand into the address register.
LINK Link and Allocate
This instruction pushes the contents of the address register onto the stack.  Then the stack pointer is put into the address 
register and finally the displacement is added to the stack pointer.  This is used with UNLK to handle nested subroutine 
calls.
LSL Logical Shift Left
If there are two operands, then this instruction logically shifts to the left the contents of the second operand by the amount 
specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of 
the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only 
one operand, then the contents of the operand will be logically shifted to the left only one bit and the operand size is limited 
to word.  Zeros are shifted into the low order bit and the last value shifted out of the high order bit is placed into the C and 
X bits.  See Figure 3.  This instruction is identical to ASL.
LSR Logical Shift Right
If there are two operands, then this instruction logically shifts to the right the contents of the second operand by the amount 
specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of 
the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only 
one operand, then the contents of the operand will be logically shifted to the right only one bit and the operand size is 
limited to word.  Zeros are shifted into the low order bit and the last value shifted out of the high order bit is placed into the 
C and X bits.  See Figure 3.
MOVEMove Data from Source to Destination
This instruction moves the contents of the first operand into the location specified by the second operand.
MOVE to CCR Move to Condition Codes
This instruction moves the contents of the first operand into the low order byte of the status register.  The high order byte of 
the contents of the first operand is ignored.  This is used to set the condition codes.  "To CCR" is not part of the opcode.
MOVE to SR Move to the Status Register
This instruction moves the contents of the first operand into the status register.  This is used to set the condition codes and 
other bits in the status register.  This is a privileged instruction.  "To SR" is not part of the opcode.
MOVE from SR Move from the Status Register
This instruction moves the status register into the location specified by the second operand.  "From SR" is not part of the 
opcode.
MOVE USP Move User Stack Pointer
This instruction moves the user stack pointer into the location specified by the second operand or moves the contents of the 
first operand into the user stack pointer.  This is a privileged instruction.  "USP" is not part of the opcode.
MOVEA Move Address
This instruction moves the contents of the first operand into the address register.
MOVEM Move Multiple Registers
This instruction moves the contents of more than one register into memory or vice versa.  If the operand size is word, then 
the low order word is moved out of the registers or sign extended words are moved into the registers.  With one exception, 
the order of moving data in or out of memory is: D0 to D7, A0 to A7.  The one exception is when predecrement mode is 
used for the effective address; then the order is A7 to A0, D0 to D7.  In predecrement mode, movement can only be from 
register to memory and in postincrement mode, movement can only be from memory to register.
MOVEP Move Peripheral Data
This instruction moves bytes in a register to alternating bytes in memory.  The transfers start with the high order byte of the 
register and end with the low order byte.  The transferred bytes go onto even addressed memory bytes.  If the effective 
address is even and the operand size is long word, then the resulting memory, starting at the effective address is 31-24 
register byte, empty byte, 23-16 register byte, empty byte, 15-8 register byte, empty byte, 7-0 register byte, empty byte.  
The exact opposite can be done.
MOVEQ Move Quick
This instruction moves an 8 bit number into a data register.
MULS Signed Multiply



This instruction multiplies the contents of two word sized signed operands and leaves a long word sized signed result in the 
second operand.  The high order word of the second operand is ignored in multiplying and is written over by the result.
MULUUnsigned Multiply
This instruction multiplies the contents of two word sized unsigned operands and leaves a long word sized unsigned result 
in the second operand.  The high order word of the second operand is ignored in multiplying and is written over by the 
result.
NBCD Negate Decimal with Extend
This instruction negates a binary coded decimal number and uses the X bit to do it.  The operation is 0 minus the contents of
the operand minus the X bit.
NEG Negate
This instruction negates a two's complement number and does not use the X bit to do it.  The operation is 0 minus the 
contents of the operand.
NEGX Negate with Extend
This instruction negates a two's complement number and uses the X bit to do it.  The operation is 0 minus the contents of 
the operand minus the X bit.
NOP No Operation
This instruction does nothing except increment the program counter by two and take time.
NOT Logical Complement
This instruction performs a bitwise logical complement on the contents of the operand.
OR Inclusive OR Logical
This instruction performs a bitwise logical OR on the contents of the two operands and places the result into the second 
operand.
ORI Inclusive OR Immediate
This instruction performs a bitwise logical OR on the contents of the two operands and places the result into the second 
operand.  The immediate data can be up to 32 bits long, depending on the operand size.  With byte or word operand size, the
second operand can be the status register.  If byte, then only the condition codes are affected.  If word, then it is a privileged 
operation and the whole status register is affected.
PEA Push Effective Address
This instruction pushes the effective address onto the stack and postdecrements the stack pointer.
RESET Reset External Devices
This instruction resets the external devices.  It is a privileged instruction.
ROL Rotate without Extend Left
If there are two operands, then this instruction rotates to the left the contents of the second operand by the amount specified 
in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of the first 
operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only one 
operand, then the contents of the operand will be rotated to the left only one bit and the operand size is limited to word.  
With each rotate of a bit the high order bit is shifted out and into two places: the low order bit and the C bit.  See Figure 3.
ROR Rotate without Extend Right
If there are two operands, then this instruction rotates to the right the contents of the second operand by the amount 
specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of 
the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only 
one operand, then the contents of the operand will be rotated to the right only one bit and the operand size is limited to 
word.  With each rotate of a bit the high order bit is shifted out and into two places: the low order bit and the C bit.  See 
Figure 3.
ROXL Rotate with Extend Left
If there are two operands, then this instruction rotates to the left the contents of the second operand by the amount specified 
in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of the first 
operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only one 
operand, then the contents of the operand will be rotated to the left only one bit and the operand size is limited to word.  
With each rotate of a bit the high order bit is shifted out and into three places: the low order bit, the X bit, and the C bit.  See
Figure 3.
ROXR Rotate with Extend Right
If there are two operands, then this instruction rotates to the right the contents of the second operand by the amount 
specified in the first operand.  If the first operand is a data register, then the distance shifted is in the right most six bits of 
the first operand.  If the first operand is immediate data, then the immediate data can be the integers 1 to 8.  If there is only 
one operand, then the contents of the operand will be rotated to the right only one bit and the operand size is limited to 



word.  With each rotate of a bit the high order bit is shifted out and into three places: the low order bit, the X bit, and the C 
bit.  See Figure 3.
RTE Return from Exception
This instruction is performed at the end of exception processing.  It replaces the status register and the program counter with
the original status register and program counter that are on the supervisor stack.  They were put there by TRAP.  This is a 
privileged instruction.
RTR Return and Restore Condition Codes
This instruction is performed at the end of a subroutine started by BSR or JMP.  It replaces the condition codes and the 
program counter with the original condition codes and program counter that are on the stack.  BRA and JMP do no put the 
condition codes onto the stack.  If you want to return with RTR, then immediately after the jump you must push the 
condition codes onto the stack, i.e., MOVE SR, -(SP).
RTS Return from Subroutine
This instruction is the normal instruction to use at the end of a subroutine started by BSR or JMP.  It replaces the program 
counter with the original program counter that is on the stack.
SBCD Subtract Decimal with Extend
This instruction subtracts the contents of the first operand and the contents of the X bit from the contents of the second 
operand with binary coded decimal arithmetic and places the result into the second operand.
Scc Set According to Condition
This instruction causes the specified byte to be set if the condition is met.  The condition is specified by the cc which is one 
of the codes in Table 3.
STOP Stop Program Execution
This instruction places the immediate data into the status register and stops the microprocessor from executing any more 
instructions.  The immediate data is 16 bits.  There are three ways to stop the STOP and restart execution.  A trace exception
will happen immediately if the trace bit is on.  If an interrupt request occurs and it is of higher priority that that of the 
current processor priority, then an interrupt exception occurs.  A reset request will always execute.  This is a privileged 
instruction.
SUB Subtract Binary
This instruction subtracts the contents of the first operand from the contents of the second operand with two's complement 
binary arithmetic and places the result into the second operand.
SUBA Subtract Address
This instruction subtracts the contents of the first operand from the contents of the second operand with two's complement 
binary arithmetic and places the result into the second operand.
SUBI Subtract Immediate
This instruction subtracts the contents of the first operand from the contents of the second operand with two's complement 
binary arithmetic and places the result into the second operand.  The immediate data can be up to 32 bits long, depending on
the operand size.
SUBQ Subtract Quick
This instruction subtracts the contents of the first operand from the contents of the second operand with two's complement 
binary arithmetic and places the result into the second operand.  The immediate data can be the integers 1 through 8.
SUBX Subtract with Extend
This instruction subtracts the contents of the first operand and the contents of the X bit from the contents of the second 
operand with two's complement binary arithmetic and places the result into the second operand.
SWAP Swap Register Halves
This instruction exchanges the contents of the high word and the contents of the low word in a data register.
TAS Test and Set an Operand
This instruction sets the high order bit of the contents of the operand to 1.  The tests for condition codes are done before the 
high order bit is set.  This instruction can be interrupted during is operation.  This operation is useful in synchronizing 
independent programs running simultaneously.
TRAP Trap
This instruction initiates exception processing.  It pushes the contents of the program counter and then the contents of the 
status register onto the supervisor stack pointer.  The address at the TRAP instruction vector is then put in the program 
counter.
TRAPV Trap on Overflow
This instruction executes a TRAP if the V bit is on.  The Trap instruction vector used is 7.
TST Test an Operand
This instruction only sets condition codes.  The operand is not affected.



UNLK Unlink
This instruction copies the contents of the address register into the stack pointer and then pops the top of the stack into the 
address register.  This is used with LINK to handle nested subroutine calls.
Appendix—Error Messages
About this Appendix
The Mops Assembler provides its own error handler for assembler code errors and can supply error messages for them.
Error in loading AsmCodes 200
There was an I/O error generated by the Macintosh file Manager.  The file AsmCode loads during compilation.  Check this 
file.  Normally, the user should never change this file.
Bad operand size 202
The operand size at the end of the opcode should be ".L", ".W", or ".B".
Bad operand 203
A faulty operand was used.  Some operand modes are illegal with some opcodes.
Bad immediate operand 205
A faulty immediate operand was used.  It is most likely a wrong character.
Error in loading Operands 206
There was an I/O error generated by the Macintosh file Manager.  The file Operands loads during compilation.  Check this 
file.  Normally, the user should never change this file.
Operands do not match 207
For opcodes ABCD and SBCD, only two types of operands are allowed (Dx and -(Ax)).  For ABCD, SBCD, ADDX, 
SUBX< and CMPM both operands must be of the same mode.
Operand not an address register 208
An operand not an address register in the MOVE USP instruction.  USP must be one operand and an address operand must 
the the other operand.
Bad register mask 210
The register list for MOVEM is faulty
Error in first pass 211
The assembler makes two passes over the code.  An error was found in the first pass so assembly was aborted before the 
second pass was started.
Cannot find object or word 216
The object or word looked for by MOPS[objname] could not be found in the dictionary.
Register direct operand needed 219
At least one of the two operands must be a register direct.
Mode mismatch 245
An operand was not of the correct mode for the instruction.
Short absolute address out of range 246
Possibly you should be using a long absolute address.
Byte displacement out of range 247
The displacement field in an indexed mode instruction is only one byte long.  You are trying to address a location too far 
from the base address.
Word displacement out of range 248
You are trying to address a location further than 32K bytes from the base address.  You might have to use an extra 
instruction or instructions to compute the address.
Immediate operand out of range 249
Fairly self-explanatory.  Possibly you should be using long immediate mode.
Branch out of range 250
Should be self-explanatory.  If you are using a short branch, substitute a long one.
Undefined label 251
You are referring to a label which hasn't been defined anywhere in a label field.
Bad opcode 252
You have specified an opcode which doesn't exist.  Possibly a typo.  Or it may be a 68020/30/40-specific instruction, which 
the assembler can't handle yet.


